Acoustic Correlates of Stress in Mankiyali

Jonathan Paramore¹ and Aurangzeb²

(f)ASAL - 13, University of Michigan

خيبر يختونخوا Khyber Pakhtunkhwa Province تنگرهار ولایت بكنيكا ولايت Jalandhar

Background

Mankiyali is an understudied Indo-Aryan language spoken in the Khyber Pakhtunkhwa Province of Pakistan.

چهتر بلین Chattar Plain تربيلا جهيل Tarbela Reservoir Mansehra

Background

Primarily spoken in the villages of **Danna** and **Dameka**.

Located in **Mansehra District**, about a 4 hour drive from Islamabad.

Background

Roughly 500 speakers.

Endangered: children are beginning to learn Hindko as their first language.

Overview of Talk

- Background on Mankiyali Phonology
- Previous studies examining the acoustic correlates of stress
- The Present Study
 - Research Questions
 - Methodology
 - Results
- Conclusion

Mankiyali Phonology

• 17 phonemic vowels

		Front		Central		Back				
		short	long	long nasal	short	long	long nasal	short	long	long nasal
High	tense	i	ii	ĩĩ				u	uu	ũũ
	lax	I	11	ĩĩ						
Mid	tense	е	ee					0	00	õõ
	lax									
Low	tense				a	aa	ãã			
	lax									

Mankiyali Phonology

Five relevant syllable types for stress: CV, CVC, CVCC, CVV, and CVVC

- CV, CVC, and CVV are widespread and appear in initial, medial, and word-final positions.
- CVVC is less common but still appears in all positions.
- CVCC is relatively rare and somewhat restricted in its distribution.

Mankiyali Stress

Default penultimate primary stress.

```
• a.na. 'gu.gu "owl"
```

- dʒan. 'dar.yoz "locks"
- 'kaa.rii "millet"

Weight-sensitive stress system: CVVC, CVV > CVCC, CVC > CV

```
• CVVC, CVV > CVCC, CVC, CV
```

```
о muk. 'lee "open (імр)" gand. 'gii "dirtiness"
```

CVCC, CVC > CV

```
o 'baŋg.su.va "buckle" ma. 'č<sup>h</sup>ɪr "mosquito"
```

The relationship between CVVC ~ CVV and CVCC ~ CVC is undetermined.

Previous Research

- There is a significant body of work analyzing the acoustic correlates of word-level stress on the world's languages.
 - Gordon & Roettger (2017) survey previous work on the subject.
 - 110 studies on 75 languages.
 - Only two Indo-Aryan languages (Sindhi and Urdu) in the survey.

Previous Research

- Duration is generally considered the most salient acoustic correlate of word-level stress (van Heuven & Turk, 2021).
 - Functional Load Hypothesis (FLH): the use of an acoustic property in other areas of the phonology of a language prevents it from being used as an acoustic correlate to stress.
 - Berinstein, 1979; Hayes, 1995; Gordon & Applebaum, 2010
 - Other studies contradict the FLH.
 - van Heuven & turk, 2021; Lunden et. al., 2017

Previous Research

- Previous studies argued for f0 as a very reliable acoustic correlate to word-level stress.
 - o e.g., Gordon, 2004; Garellek & White, 2015; among many others
- Recent work argues that most acoustic studies of stress have failed to disentangle word-level stress from phrase-level stress.
 - Phrase-level stress: prominence on the primary stressed syllable of the focused word in a phrase.
 - Word-level stress: prominence on the primary stressed syllable of every word that has stress (focus or non-focus).

This Study - Research Questions

- What are the acoustic correlates of word-level stress?
 - Does the FLH prevent duration from being an acoustic correlate to word-level stress?
- What are the acoustic correlates of phrase-level stress?
 - Do these correlates differ from those of word-level stress?

Participants

30 native speakers of Mankiyali.

Ages 20-51.

All participants are **at least trilingual** in Mankiyali, Hindko, and Urdu.

Speech Materials

- Compares the acoustic properties of stressed syllables vs. unstressed syllables.
- Disyllabic words.
- Penultimate target syllables
- Grouped into near minimal pairs.
 - e.g., 'ya.ka ~ ya.'kar
- **CVVC** tokens targeted the word-final syllable.

Target σ stressed	Target σ unstressed
'CV.CV	CV. 'CVC
'CVC.CV	CVC. 'CVV
'CVV.CVV	CVV.'CVVC
'CVCC.CV	CVCC. 'CVV
CVV.'CVVC	'CVVC.CVVC

Speech Materials

• Five word pairs for each syllable type = **50 tokens**.

CV		CVC		CVV		CVCC		CVVC	
' k ha.ba	kha. 'baar	ˈ gar .ku	gar. 'kuu	ˈ bē̃ē .ɣĩῖ	bẽẽ. ˈɣĩiz	ˈ saŋg .yõ	sang. 'toob	laŋ.ˈ gaar	'daan. gaar
' ma .za	ma. 'zar	ˈ mus .ki	mus. ˈkii	ˈ pee .kii	pee. 'kiiz	' gand .yõ	gand. ˈgii	ka.' daar	'kaar. daar
' ka .ca	ka. 'car	' bel .ti	bel. 'tiiz	ˈ kaa .γaa	kaa. 'yaaz	' mist .ri.yo	mist. ˈrii	go.ˈ daar	'dʒoon. daar
' ya .ka	ya. ˈkaʈ	'kut.re	kut. 'reez	' dee .kii	dee . 'kiiz	ˈ ist .ri.yõ	ist. ˈrii	maz. 'daar	'daay. daar
ˈ cu .ki	cu. ˈkiiŋ	path.re	path. 'reez	' čee .bii	čee. 'biiz	ˈ dʒant .ri.yõ	dʒant.ˈrii	baz. 'vaan	'aaz. vaa ŋ

Speech Materials

<u>Sentence 1 (target sentence to analyze phrase-level stress)</u>

Mini sangi [token] mandzu

My friend [token] said

"my friend said [token]"

Sentence 2

Mini sangi du var [token] mandzu

My friend two times [token] said

"my friend said [token] two times"

<u>Sentence 3 (target sentence to analyze word-level stress)</u>

Mini sangi coor var [token] mandzu

My friend four times [token] said

"My friend said [token] four times"

Tokens embedded in carrier sentences.

Carrier sentences inserted into 3-sentence mini-monologues.

50 target mini-monologues

+ 34 filler mini-monologues

= 84 mini-monologues

Elicitation Procedure

Sessions took place in quiet homes in Danna and Dameka.

Zoom H5 4-track recorder.

Audio-Technica BP894X **Cardioid Condenser Mic**.

Elicitation Procedure

- Participants given oral instructions in Mankiyali.
 - Instructed to read mini-monologues out loud at a normal pace.
- Mini-monologues presented in a random order on a laptop in Microsoft Word.
- Roughly 5 minutes to read through the materials before recording.
 - Presented in Urdu script.
- Halfway through the mini-monologues, participants took a 5-minute break.
- 2 days later, participants returned for a second recording.

Data Processing

Increased waveform amplitude and periodicity

 Target vowel boundaries marked in Praat (Boersma & Weenink, 2016).

Onset of strong formant energy

Total Tokens

- Total projected number of tokens (N).
 50 tokens x 30 speakers x 2 repetitions x 2 stress-level conditions
 N = 6,000 tokens (3,000 word-level and 3,000 phrase-level)
- 351 tokens discarded due to poor quality.
 N = 5,649 tokens (2,821 word-level and 2,828 phrase-level)

Acoustic Measurements

3 acoustic properties extracted from each target vowel.

- Duration: Total time (ms) between vowel boundaries.
- **f0**: average pitch (Hz) over middle 60% of the vowel.
- Intensity: average energy (dB) over middle 60% of the vowel.

Statistical Measurements

3 Linear mixed-effects models for word-level stress

- Fixed effects
 - STRESS (primary, unstressed)
 - SYLLABLE TYPE (CV, CVC, CVCC, CVV, CVVC)
- Random effects
 - SPEAKER, WORD, REPETITION

What are the acoustic correlates of word-level stress?

Statistical Measurements

3 LME models comparing phrase-level to word-level stressed syllables

- Fixed effects
 - STRESS LEVEL (phrase-level, word-level)
 - SYLLABLE TYPE (CV, CVC, CVCC, CVV, CVVC)
- Random effects
 - SPEAKER, WORD, REPETITION

What are the acoustic correlates of phrase-level stress?

Results - Summary

- Models examining acoustic correlates of word-level stress.
 - A significant effect of STRESS on duration.
 - Generally no effect of STRESS on f0 or Intensity.
 - Effects don't seem to differ significantly across syllable types.
- Models examining acoustic correlates of phrase-level stress.
 - A significant effect of STRESS on all three acoustic properties.

Results - CV syllables duration

Boxplots showing mean duration of word-level stressed vs. unstressed CV syllables

Is <u>duration</u> an acoustic correlate of word-level stress for **CV** syllables?

$$\beta = -6.9032 \mid p < 0.0001 \mid t = -7.012$$

Results - CVC syllables duration

Boxplots showing mean duration of word-level stressed vs. unstressed CVC syllables

Is <u>duration</u> an acoustic correlate of word-level stress for **CVC** syllables?

$$\beta = -6.3230 \quad p < 0.0001 \quad t = -6.631$$

Results - CVCC syllables duration

Boxplots showing mean duration of word-level stressed vs. unstressed CVCC syllables

Is <u>duration</u> an acoustic correlate of word-level stress for **CVCC** syllables?

$$\beta = -6.1269 \mid p < 0.0001 \mid t = -6.676$$

Results - CVV syllables duration

Boxplots showing mean duration of word-level stressed vs. unstressed CVV syllables

Is <u>duration</u> an acoustic correlate of word-level stress for **CVV** syllables?

$$\beta = -8.137$$
 $p < 0.0001$ $t = -7.584$

Results - CVVC syllables duration

Boxplots showing mean duration of word-level stressed vs. unstressed CVVC syllables

Is <u>duration</u> an acoustic correlate of word-level stress for **CVVC** syllables?

$$\beta = -11.317 \mid p < 0.0001 \mid t = -9.874$$

Results: word-level duration

Is **duration** an acoustic correlate of word-level stress?

Does this differ across syllable type?

Syllable Type	Coefficient	p-value	t-value
CV	$\beta = -6.9032$	p < 0.0001	t = -7.012
CVC	$\beta = -6.3230$	p < 0.0001	t = -6.631
CVCC	$\beta = -6.1269$	p < 0.0001	t = -6.676
CVV	$\beta = -8.137$	p < 0.0001	t = -7.584
CVVC	$\beta = -11.317$	p < 0.0001	t = -9.874

Results: word-level f0

Boxplots showing **average f0** of word-level stressed vs. unstressed syllables by syllable type

Is **f0** an acoustic correlate of word-level stress?

Syllable	Coefficient	p-value	t-value
CV	$\beta = 0.323$	p = 0.87	t = 0.164
CVC	$\beta = -6.491$	p < 0.01	t = -3.138
CVCC	$\beta = 1.568$	p = 0.276	t = 1.089
CVV	$\beta = 0.7055$	p = 0.473	t = 0.718
CVVC	$\beta = 0.1203$	p = 0.867	t = 0.168

Results: word-level intensity

Boxplots showing average intensity of word-level stressed vs. unstressed syllables by syllable type

Is <u>intensity</u> an acoustic correlate of word-level stress?

Syllable	Coefficient	p-value	t-value
CV	$\beta = -0.01349$	p = 0.96	t = -0.05
CVC	$\beta = -0.6717$	p < 0.05	t = -2.33
CVCC	$\beta = 0.05694$	p = 0.829	t = 0.216
CVV	$\beta = -0.1688$	p = 0.397	t =848
CVVC	$\beta = 0.00670$	p = 0.975	t = 0.031

Results: phrase-level duration

Boxplots showing average duration of stressed phrase-level vs. stressed word-level syllables

Is <u>duration</u> an acoustic correlate of phrase-level stress?

Syllable	Coefficient	p-value	t-value
CV	$\beta = -8.3417$	p < 0.0001	t = -9.775
CVC	$\beta = -12.8367$	p < 0.0001	t = -13.138
CVCC	$\beta = -10.204$	p < 0.0001	t = -9.935
CVV	$\beta = -24.552$	p < 0.0001	t = -19.45
CVVC	$\beta = -25.294$	p < 0.0001	t = -21.02

Results: phrase-level f0

Boxplots showing average f0 of stressed phrase-level vs. stressed word-level syllables

Is <u>f0</u> an acoustic correlate of phrase-level stress?

Syllable	Coefficient	p-value	t-value
CV	$\beta = -16.079$	p < 0.0001	t = -9.548
CVC	$\beta = -12.827$	p < 0.0001	t = -8.342
CVCC	$\beta = -11.566$	p < 0.0001	t = -8.196
CVV	$\beta = -8.2913$	p < 0.0001	t = -8.788
CVVC	$\beta = -13.4577$	p < 0.0001	t = -18.61

Results: phrase-level intensity

Is **intensity** an acoustic correlate of **phrase-level stress**?

Syllable	Coefficient	p-value	t-value
CV	$\beta = -4.1828$	p < 0.0001	t = -15.89
CVC	$\beta = -4.0198$	p < 0.0001	t = -13.13
CVCC	$\beta = -3.169$	p < 0.0001	t = -11.27
CVV	$\beta = -3.4589$	p < 0.0001	t = -17.26
CVVC	$\beta = -4.8317$	p < 0.0001	t = -21.76

Boxplots showing average intensity of stressed phrase-level vs. stressed word-level syllables

Conclusion

- Duration is the only acoustic correlate for word-level stress, of the the properties we measured, indicating that the FLH does not hold, at least in Mankiyali.
 - Duration can distinguish vowel phonemes and act as an acoustic correlate to stress.
- All three acoustic properties measured act as acoustic correlates to phrase-level stress.
 - This is interesting, given that most studies suggest f0 is the sole acoustic correlate to phrase-level stress.

Thank you!

References

Berinstein, A. E. (1979). A Cross-Linguistic Study on the Perception and Production of Stress. UCLA Working Papers in Phonetics 47.

Boersma, Paul & David Weenink. (2016). Praat: Doing phonetics by computer (version 5.4.21). http://www.fon.hum.uva.nl/praat/.

Bruggeman, A., Louriz, N., Almbark, R., & Hellmuth, S. (2021). Acoustic correlates of lexical stress in Moroccan Arabic. Journal of the International Phonetic Association, 51(3), 425-449. doi:10.1017/S002510032000002X

Dyrud, L. O. (2001). Hindi-Urdu: stress accent or non-stress accent? Master's Thesis, Univ., Grand Forks.

Garellek, M., & White, J. (2015). Phonetics of Tongan stress. Journal of the International Phonetic Association, 45(1), 13-34. doi:10.1017/S0025100314000206

Gordon, M. (2004). A Phonological and Phonetic Study of Word-Level Stress in Chickasaw. International Journal of American Linguistics, 70(1), 1–32. https://doi.org/10.1086/422264

Gordon, Matthew K. (2014). Disentangling stress and pitch accent: A typology of prominence at different prosodic levels. In van der Hulst, Harry (ed.), Word Stress: Theoretical and Typological Issues, pp. 83-118. Oxford University Press.

Gordon, Matthew K. & Ayla Applebaum. (2010). Acoustic correlates of stress in Turkish Karbadian. Journal of the International Phonetic Association 40(1), pp. 35-58. doi:10.1017/S0025100309990259

The phonology of tone and intonation. Cambridge: Cambridge University Press.

Hayes, Bruce. (1995). Metrical stress theory: Principles and case studies. Chicago, IL & London: The University of Chicago Press.

Lunden, A., Campbell, J., Hutchens, M., & Kalivoda, N. (2017). Vowel-length contrasts and phonetic cues to stress: An investigation of their relation. *Phonology*, 34(3), 565-580. doi:10.1017/S0952675717000288

Paramore, Jonathan Charles. 2021. Mankiyali Phonology: Description and Analysis. Master's thesis, University of North Texas. UNT Digital Library. https://digital.library.unt.edu

R Core Team. 2016. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/. [Software]

van Heuven, Vincent J. & Alice Turk. 2021. Phonetic correlates of word and sentence stress. In Carlos Gussenhoven & Aoju Chen (eds.), *The Oxford Handbook of Language Prosody* (pp. 150-165). Oxford University Press. DOI: 10.1093/oxfordhb/9780198832232.013.8

Yakup, M., & Sereno, J. (2016). Acoustic correlates of lexical stress in Uyghur. Journal of the International Phonetic Association, 46(1), 61-77. doi:10.1017/S0025100315000183